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要旨

近年,整数線形計画問題に対して代数的な視点からトーリックイデアルを用いたアプロー
チが行われており,具体的にはそのグレブナ基底や standard pairを用いた手法が注目さ
れている. 本研究では,無閉路トーナメントグラフ上の最小費用流問題を対象とし, その
双対問題を考察する.まずトーリックイデアルの全てのグレブナ基底はサーキットをなす
ことを示す.次いで特にコストベクトルが負であるときを取り上げ,この時グレブナ基底
のサイズが最小であること,またグレブナ基底より得られた standard pairより dを点の
数として arithmetic degreeが (d− 1)!となること,および standard pairと主問題におけ
る実行可能な全域木が対応することを示す. また,双対問題の arithmetic degreeは主問
題と異なり,最小の場合でも指数オーダーになるとの予想を提示する.
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Abstract

Recently algebraical approaches using toric ideal have been carried out, and now the
methods with Gröbner basis and standard pair are paid attention to. In this study, we
focus to minimum cost flow problem on an acyclic tournament graph and investigate its
dual problem. First we prove that universal Gröbner basis of toric ideal is associated
with circuit. Next we focus the case that a cost vector is negative, we explain that
the size of Gröbner basis becomes minimum, that by standard pairs generated by
Gröbner basis arithmetic degree is (d− 1)! where d is the number of vertices, and that
one standard pair corresponds to one feasible spanning tree in the graph in primal
problem. Then we suggest a conjecture that arithmetic degree in dual problems is of
exponential order even in minimum cases, as opposed to primal problems.
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1 Introduction

The methods to solve linear problems have
been researched for many years. Especially,
Karmarker’s algorithm [9] is famous as a
method to solve such problems in polynomial
time. And integer programming problems,
in which variables are all integer, are famous
as representative problems of linear program-
ming problem. This problem is known as NP-
hard, thus much investigation about approx-
miate method has been done.

But recently, some algebraic approaches
come to be applied to integer programming
problem. In these approaches, Gröbner bases
and standard pairs are useful tools (See [1]
and [3]). Although they do not give improve-
ment of complexity in comparison with exist-
ing methods, these methods are interesting in
terms of algebraic view.

The minimum cost flow problem, which is a
restricted case of integer programming prob-
lem, is well-known as the problem which can
be solved in polynomial time. Gröbner ba-
sis approach is based on cycle-canceling algo-
rithm [13, 15], meanwhile standard pair ap-
proach is that by solving equations for each
gained standard pair [3].

In past papers [2, 7], studies about the
structure of Gröbner bases and of standard
pairs for the minimum cost flow problem have
been done. The lower bound 1 of arithmetic
degree and the upper bound 1

d

(2(d−1)
(d−1)

)
, d is the

number of vertices, is shown in [7], using the
following two results, one is about the charac-
terization of Gröbner basis [6] and the other
is about the special hypergeometric function
[2].

Now we focus on dual problems of the min-
imum cost flow problems on acyclic tourna-
ment graph based on those studies. Duality
of problem has some interesting properties:

• If feasible solutions exist both in primal
and dual, the values of the objective func-
tions correspond to each other.

• Circuits of graph of primal problem asso-
ciate with cutset of graph of dual prob-
lem.

• Dual problems of “dual problems” return
to primal problems.

In this paper, we investigate Gröbner bases
and standard pairs of dual problems, using
TiGERS and Macaulay 2. By the result, it
is assumed that arithmetic degree has expo-
nential order even in minimum case.

This paper is organized as follows. In Chap-
ter 2 we introduce an adequate term order for
cost vector which has negative elements and
find Gröbner basis with respect to the order-
ing, and additionally find universal Gröbner
basis which is based on all possible term or-
der. In Chapter 3 we analyze standard pairs
associated with Gr̈obner bases found in Chap-
ter 2 and evaluate the arithmetic degree. In
Chapter 4 we conclude this paper.

2 Toric Ideals of Minimum

Cost Flow Problem

First we give a definition about integer pro-
gramming problem. The form of primal prob-
lem is as follows:

min. c · x
sub. to Ax = b,x ≥ 0

A ∈ Z
d×n,x ∈ N

n, c ∈ R
n, b ∈ Z

d

Now we consider minimum cost flow problem
on acyclic tournament graph, so we let A be
incidence matrix, b be the sum of incoming
/ outgoing flow, and c be a cost of each ver-
tex. And variable x means actual quantity of
flow. In this form, d representes the number
of vertices and n the number of edges. Then
n =

(d
2

)
.

Next we introduce term orders and toric
ideals. We define a monomial xα for x =
(x1, · · · , xn) and α = (a1, · · · , an) ∈ Z

n as
follows:

xα = xα1
1 , · · · , xαn

n

Let � be a total order on monomial
K[x1, · · · , xn], as K is a field. � is called a
term order when � satisfies the following.

1. If xα � xβ, then xαxγ � xβxγ , for∀xγ
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2. ∀xα ∈ K[x1, · · · , xn]\{1}, xα � 1

In this study, we use term order generated by
cost vector. Let cost vector c be non-negative.
First, monomials are compared by inner prod-
ucts with vector c. If the values are same, then
compared by another term order.

Now we consider A as a set of column vec-
tors {a1, · · · ,an}. Each ai is identified with a
monomial tai in the Laurent polynomial ring
k[t±1] := k[t1, · · · , td, t

−1
1 , · · · t−1

d ].

Definition 2.1 Consider the homomorphism
π : k[x1, · · · , xn] −→ k[t±1], xi �−→ tai

The kernel of π is denoted IA and called
the toric ideal of A. In other words, IA is like
following[12]:

IA = 〈xu+ − xu− | u ∈ Ker(A) ∩ Z
n〉

Now we introduce Gröbner basis.

Definition 2.2 Let I be an ideal on
K[x1, · · · , xn] and � be a term order.
Now we define the initial ideal of I as

in�(I) := 〈in�(f) : f ∈ I〉.

A finite set of polynomials G ⊂ I is called a
Gröbner basis when for any f ∈ I there exists
gi ∈ G such that in(f) is divisible by in(gi). If
a cost is positive, Gröbner basis always exists.
And we introduce universal Gröbner basis.

Definition 2.3 Universal Gröbner basis of
an ideal I is the union of reduced Gröbner
bases of I for all possible term orders.

Consequently every ideal I ⊂ K[x1, · · · , xn]
has a finite universal Gröbner basis.

u+ is the set of positive elements of u and
u− is that of negative elements of u. We in-
dicate the universal Gröbner basis of IA as
UA. For example, concerning u = (1, 0, 1,−1),
toric ideal is x1x3 − x4.

Lemma 2.4 Toric ideals IA are generated by
finite binomials.

2.1 Case of Primal Problem

First we consider on acyclic tournament graph
with 4 vertices. Then an incidence matrix A
is as follows.

A =




1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1




But one row is dependent on other rows, so
we remove the lowest row which represents a
sink. The kernel of A is a set of linear com-
bination of (1,−1, 0, 1, 0, 0), (1, 0,−1, 0, 1, 0),
and (0, 1,−1, 0, 0, 1). So toric ideals of
A is 〈x12x23 − x13, x12x24 − x14, x13x34 −
x14, x23x34 − x24, x13x24 − x14x23〉. The poly-
nomials construct circuits of graph.

Second, we introduce initial terms. Let
us assume the cost vector c is (2, 1, 1, 2, 3, 1).
Then the initial term of x12x23 −x13 is x12x23

because 2+2 > 1. Similarly, x12x24 and x13x14

become initial terms.

2.2 Case of Dual Problem

2.2.1 Transformation of Problem

The form of dual problem is as follows:

max. b · y
sub. to AT y ≤ c

AT ∈ Z
n×(d−1),y ∈ Z

d−1,
c ∈ R

n, b ∈ Z
d−1

We transform this as follows, as to deal it eas-
ily.

min. (−b 0)
(y
z
)

sub. to
(

AT In

) (
y
z

)
= c

AT ∈ Z
n×(d−1),y ∈ Z

d−1, c ∈ R
n,

b ∈ Zd−1,z ∈ Nn

2.2.2 Universal Gröbner Basis and
Circuits

Definition 2.5 For a matrix A, a non-zero
vector u ∈ ker(A) is a circuit if supp(u) :=
{i : ui �= 0} is minimal with respect to in-
clusion, and the elements of u are relatively
prime.
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We define CA as {xu+ − xu− : u is a circuit
of A}, and represents universal Gröbner basis
as UA.

Definition 2.6 (unimodularity) We de-
fine a non-singular matrix whose partial
d × d determinant has absolute value 1 an
unimodular matrix. Moreover, if determinant
of any non-singular submatrix is 0 or ±1, the
matrix is called totally unimodular.

Lemma 2.7 If A is a totally unimodular ma-
trix, CA = UA.

In the case of minimum cost flow problems,
the incidence matrices of primal problem A
is totally unimodular, so that of dual problem
(AT In) is unimodular. Hence CA = UA stands,
and for any cost vector, reduced Gröbner
bases is contained in CA.

Then let xC be the sum of i-th column vec-

tor of
(

Id−1

−AT

)
for all i ∈ C : C is a set of

vertices contained in cutset.

Theorem 2.8 A basis of Ker((AT In)) con-
sists of {x{1}, · · · , x{d−1}}. In other words,
Ker((AT In)) is a set of linear combinations
of each column vector of following matrix(

Id−1

−AT

)
.

Theorem 2.9 The set of circuit of a matrix
(AT In) is {xC : C ⊆ {1, . . . , d − 1}}.

Proof
Let a ∈ Ker((AT , In))∩Z

d−1+n(assume a �=
0). From Theorem 2.8, a is like as follows.

a = (a1, · · · , ad−1, a12, · · · , a1d, a23, · · · , ad−1,d)

=
d−1∑
i=1

kix{i}, ki ∈ N

We can suppose k1 �= 0 without loss of gener-
ality.

First we assume that some kj �= 0 (j =
2, · · · , d − 1) is not equal to k1 and show a
contradiction.

We assume C = {i ∈ {1, . . . , d − 1} : ki =
k1}. Then ap = kp = k1 for any p ∈ C. And

for any p ∈ C and q �∈ C, if p < q then apq =
−kp + kq �= 0, otherwise aqp = kp − kq �= 0.
Therefore supp(a) ⊇ supp(xC) stands, thus a
is not circuit.

So for any j = 2, · · · , d − 1, kj = k1 or
kj = 0. Then a = k1xC′

(
C ′ = {j ; kj = ki}

)
and supp(a) = supp(xC′).

Next, we consider for cutsets C1, C2 ⊆
{1, . . . , d − 1} which is C1 �= C2,

1. The case of C2 ⊆ C1

If we take p ∈ C1 − C2, q ∈ C2, the edge
(p, d) is contained in the cutset by C1 but is
not contained in that by C2. So (xC1)pd �= 0,
and (xC2)pd = 0. Moreover, the edge (p, q) is
contained in the cutset by C2 but is not con-
tained in that by C1. So (xC1)pq = 0, and
(xC2)pq �= 0. Consequently, there is no rela-
tion of inclusion between the support of xC1

and xC2 .

2. The case that C1 and C2 have no re-
lation of inclusion each other

By taking such p ∈ C1−C2, q ∈ C2−C1 and
considering the edges (p, d) and (q, d), we can
show the independency between the support
of xC1 and xC2 , as a same way as the case
C2 ⊆ C1. �

2.2.3 Gröbner Bases when Cost Vector
is Negative

First we need to settle an adequate term order
for negative cost vector. The elements of the
cost vector (−b 0) can be positive and neg-
ative, so we cannot decide term orders sim-
ply according to the order of the elements of
the cost. Then we introduce new non-negative
vector, keeping generated initial terms un-
changed.

Lemma 2.10 ([12]) For a cost vector ω,
when non-negative vector ω′ exists and
inω(I) = inω′(I), ω compose a term order and
the Gröbner bases for ω is equal to that for ω′.

Gröbner basis generates ideal I. Thus if we
can show a non-negative vector β exists when
Ax = b is feasible and in(−b)(g) = inβ(g)
where g is any elements of Gröbner basis, we
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can compose a term order from cost vector
(−b 0).

In primal problem Ax = b, one of feasible
solution f = (f12, · · · fd−1,d) is non-negative.
From it, we take β as

β = (0, · · · , 0,f )

then for any vector xC ,

β · xC =
∑

i/∈C,j∈C,i<j

βij −
∑

i∈C,j /∈C,i<j

βij

= −
∑
i∈C

bi

= (−b) · xC

therefore in(−b)(g) = inβ(g), we can com-
pose a term order from (−b, 0). Next we cal-
culate a Gröbner basis.

Theorem 2.11 When cost vector −b =
(b1, · · · , bn) satisfies −bi < 0(∀i), reduced
Gröbner basis is {−x{1}, · · · ,−x{d−1}}.

In other words, for each vertex, the set of
the cutsets between one vertex and the others
makes Gröbner basis.

Proof Universal Gröbner basis is a set of all
cutsets. And the two sets of edges,

• Cutset edges from i when the largest in-
dex is i in cutset C, and

• Cutset edges from i when cutset C = {i}.
are equal. It means, for a certain cut-
set K (suppose the largest number is
i), its initial term contains the monomial∏n

k=i+1 yki · · · (1). On the other hand, when
a cutset contains only i, an associated bino-
mial is

n∏
j=i+1

yij − xi

i−1∏
j=1

yji

its initial term based on term order by cost
vector (−b 0) is

∏n
j=i+1 yij · · · (2) , so (2) can

divide (1). �
We calculated the reduced Gröbner bases

using TiGERS. Then the minimum number
of elements of reduced Gröbner basis is d− 1.

3 Standard Pairs of Mini-

mum Cost Flow Problem

First we give some definitions about stan-
dard pairs. For a fixed cost vector c, let
Oc ⊂ N

n be the set of all the optimal solu-
tions. Let Nc be the set of non-optimal so-
lution on linear integer programming prob-
lems. Then Nc is N

n\Oc.For a ∈ N
n and

σ ⊆ {1, · · · , n}, we define a set of points (a, σ)
as {a +

∑
i∈σ kiei | ki ∈ N}. Then constraints

are written as

Au = A(a +
∑
i∈σ

kiei)

= Aa +
∑
i∈σ

kiai

= b

Consequently there are n equations, and the
form is

∑
i∈σ kiai = b − Aa.

Lemma 3.1 ([10]) The monomial which is
not contained in inC(IA) has one-to-one re-
lation with OC .

Definition 3.2 (a, σ) is a standard pair of
Oc if

1. supp(a) ∩ σ = φ.

2. (a, σ) ⊆ Oc

3. (a, σ) �⊂ (b, τ) for any (b, τ) which satis-
fies 1. and 2..

We can obtain a set of standard pairs by a
decomposition of Oc. The number of standard
pairs is finite and unique. Now we call the
number arithmetic degree. If the arithmetic
degree is n, we can find an optimal solution
by solving at most n equations [3].

For example, we consider the case of tour-
nament graph of 3 vertices. Then A is

 1 1 0
−1 0 1
0 −1 −1


 .

Thus toric ideal IA is kernel of A, in fact
〈x1x3 − x2〉. There are two possible cases by
value of c.
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1. The case when c1 + c3 > c2

The initial term is x1x3. Thus Nc =
((1,0, 1) + N

3), Oc = N
3\Nc. Then standard

pairs are ((0,0, 0), (1, 2)) and ((0,0, 0), (2, 3))
(See Figure 1). Thus the arithmetic degree

is 2. By solving two cases A


 x12

x13

0


 = b

and A


 0

x13

x23


 = b, we can find an optimal

solution. In the latter case, the flow is like as
Figure 2.

2. The case when c1 + c3 < c2

The initial term is x2. Thus Nc = ((0,1, 0)+
N

3). Then standard pair is ((0,0, 0), (1, 3)).
The arithmetic degree is 1. By solving a case

A


 x12

0
x23


 = b, we can find an optimal solu-

tion. Then flow is like as Figure 3. There is
no flow at (1, 3).

Lemma 3.3 ([13]) Nc can be written as the
form of ∪s

i=1(pi + N
n). Such set pi has a rela-

tion with a Gröbner basis.

Theorem 3.4 ([4]) If Nc = ∪s
i=1(pi + N

n)
and pi ∈ {0, 1}n (i = 1, · · · , s), then any stan-
dard pair is the form of ((0, · · · , 0), σ).

3.1 Standard Pairs in Primal Prob-
lem

In primal problem, minimum arithmetic de-
gree is 1. Let us consider a cost vector
such cij >

∑j−1
i ci,i+1 for any i, j s.t. j >

i + 1). Then the set of optimal solution Oc

is
∑d−1

i=1 kiei,i+1, which implies that Nc =
∪j−i≥2(eij+N

n). Therefore arithmetic degree,
which is the number of standard pair, is only
one, and the form is as follows:

((0, · · · , 0), {(1,2), (2, 3), · · · , (d − 1, d)})
On the other hand, maximum arithmetic

degree is equal to (d − 1)-th Catalan num-
ber 1

d

(2(d−1)
d−1

)
. The case is when cost vector

c satisfies the following:

cij + cjk > cik (for any i < j < k)
cik + cjl > cil + cjk (for any i < j < k < l)

Figure 1: Space of Nc and Oc in the case c12 +
c23 < c13

1

2 3

(1,2) (1,3)

(2,3)

Figure 2: Flow in the case c12 + c23 > c13

1

2 3

(1,2) (1,3)

(2,3)

Figure 3: Flow in the case c12 + c23 < c13

Then Nc =
(∪i<j<k((eij + ejk) + N

n)
) ∪(∪i<j<k<l((eik + ejl) + N

n)
)
.

Theorem 3.5 ([7]) The number of spanning
tree such

• does not contain both (i, k) or (j, k)

• does not contain both (i, k) or (j, l)

6



is 1
d

(2(d−1)
d−1

)
[11]. Thus arithmetic degree in-

creases exponential order for d in maximum
case.

3.2 Standard Pairs in Dual Problem

3.2.1 Standard Pairs by Universal
Gröbner Basis

By Theorem 2.8, 2.9 and the definition of
standard pair, each standard pair of toric ideal
represents a choice of one edge from a set of
flowing-out edges for cutset C (when the ini-
tial term is composed by only edges), other-
wise a choice of either one point in C or a
set of flowing-in edges for C (when the initial
term includes vertices).

3.2.2 Case on Negative Cost Vector

We consider the case that all elements of −b
is negative. From Theorem 2.11, the set of
Gröber Bases is {−x{1}, · · · ,−x{d−1}}. So the
set of initial terms is as follows:{

d∏
j=i+1

yij

∣∣∣∣∣ 1 ≤ i ≤ d − 1

}
.

Then

Nc =((1, · · · , 1︸ ︷︷ ︸
y12,··· ,y1d

, 0 · · · , 0) + N
n) ∪

((0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
y23,··· ,y2d

, 0 · · · , 0) + N
n) ∪ · · · ∪

((0, · · · , 0, 1) + N
n).

So standard pairs are the set of the following
form:

(0, ( 0, · · · , 1, 0,︸ ︷︷ ︸
just one of y12···y1d is 1

0, · · · , 1, 0︸ ︷︷ ︸
y23···y2d

, · · · )).

In this case, the arithmetic degree is (d−1)!.
It corresponds to the number of feasible span-
ning trees. By non-zero elements in standard
pair, we can compose a spanning tree.

Definition 3.6 ([1]) Co-tree is a set of edges
which is a complement of a spanning tree.

Spanning tree is maximal set of edges which
does not include circuits, and co-tree is max-
imal set of edges which does not include cut-
sets.

Theorem 3.7 ([8]) Optimal solution of dual
problem does not include a cutset.

3.2.3 Max / Min Number of Arith-
metic Degree

On basis of Gröbner bases found in Section
3.2.5, we calculated standard pairs for each
initial term, using Macaulay 2.[5] The result
is in Table 1.

arithmetic degree
d min max (d − 1)! dd−2

3 1 3 2 3
4 2 12 6 16
5 4 68 24 125
6 12 Too Large 120 1296

Table 1: Arithmetic degree

The minimum number indicates the case
that the size of Gröbner basis is minimum and
the initial term is a term which the degree
is less than that of the other. (e.g. for the
ideal y13y14y15 − x3y12, the degree of x3y12 is
2 and less than that of the other). So there
are 1 · 2 · · · [n2 ] · · · 2 · 1 pairs.

On the other hand, it is obvious that the
maximum number of arithmetic degree is less
than dd−2, which is the number of all span-
ning trees (i.e. the number of co-trees). But
specific meaning of the number is not found
yet.

4 Conclusion

We wrote integer programming problems as
standard form, and assured that toric ideals
by (AT In) is represented by an independent
set of linear combination of each column vec-

tor of
(

In

−AT

)
, and they compose circuits.

And a certain cost vector can be replaced by
non-negative vector, without changing gener-
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ated in(g). This made it possible that we com-
posed a term order from any cost vector. So as
an example, for a negative vector, the Gröbner

basis was each column vector of
(

In

−AT

)
.

Next, by calculating universal Gröbner basis
by TiGERS, it was found that minimum size
of Gröbner basis is d−1, and such Gröbner ba-
sis actually exists. Additionally, it was shown
that all binomials in universal Gröbner basis
compose circuit.

About standard pairs, focusing on the case
that cost vector is negative, arithmetic degree
is (d−1)!. It is equal to the number of feasible
spanning trees, additionally there are one-to-
one relations between each standard pair and
feasible spanning tree.

And as a result of the experiment for uni-
versal Gröbner basis, it is conjectured that
the arithmetic degree has exponential order
for the number of vertices, even in the case
which the size of Gröbner basis is minimum.

References

[1] P. Conti and C. Traverso. Buchberger Al-
gorithm and Integer Programming. In Pro-
ceedings of the ninth Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes
(AAECC-9) (New Orleans), Springer, LNCS
539(1991), pp. 130–139.

[2] I. M. Gelfand, M. I. Graev, and A. Post-
nikov. Combinatorics of hypergeometric func-
tions associated with positive roots. In
Arnold-Gelfand Mathematical Seminars: Ge-
ometry and Singularity Theory, pages 205-
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[4] S. Hoçten and R. R. Thomas. Gomory in-
teger programs. Los Alamos e-print archive,
math.OC/0106031, 2001.

[5] S. Hoçten and G. G.Smith. Computations in
Algebraic Geometry with Macaulay 2, volume
8 of Algorithms and Computation in Mathe-
matics, chapter Monomial Ideals, pages 73–
100. Springer-Verlag, Berlin, 2001.

[6] T. Ishizeki and H. Imai. Gröbner Bases
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