Sonoko Moriyama

Assistant Professor,
Institute for Nano Quantum information Electronics


Refereed Journal Papers

  1. Sonoko Moriyama and Fumihiko Takeuchi, Incremental construction properties in dimension two --- shellability, extendable shellability and vertex decomposability, Discrete Mathematics 263, pp. 295-296, 2003.
  2. Sonoko Moriyama and Masahiro Hachimori, h-assignments of simplicial complexes and a reverse search, Discrete Applied Mathematics 154, pp.594-597, 2006.
  3. Sonoko Moriyama and Yoshio Okamoto, The even outdegree conjecture for acyclic PLCP cubes in dimension five, IEICE transactions on Information and Systems, volume E89-D no.8, pp.2402-2404, 2006.
  4. Masahiro Hachimori and Sonoko Moriyama, A note on shellability and acyclic orientations, Discrete Mathematics 308, issue 12, pp.2379-2381, 2008.
  5. Komei Fukuda, Sonoko Moriyama, Hiroki Nakayama and Jurgen Richter-Gebert, Every non-Euclidean oriented matroid admits a biquadratic final polynomial, Combinatorica, 29 (6), pp.691-698, 2009.
  6. Komei Fukuda, Sonoko Moriyama and Yoshio Okamoto, The Holt-Klee condition for oriented matroids, European Journal of Combinatorics, vol.30, issue 8, pp.1854-1867, 2009.
  7. David Avis and Sonoko Moriyama, On Combinatorial Properties of Linear Program Digraphs, CRM Proceedings, vol.48, pp. 1-14, 2009.
  8. Hiroyuki Miyata, Sonoko Moriyama and Hiroshi Imai, Deciding non-realizability of oriented matroids by semidefinite programming, Pacific Journal of Optimization, vol.5, pp. 211-224, 2009.
  9. David Avis, Sonoko Moriyama and Masaki Owari, From Bell Inequalities to Tsirelson's Theorem, IEICE transactions on Information and Systems, volume E92-A, No.5, pp. 1254-1267, 2009.

Refereed Conference Papers

  1. Sonoko Moriyama and Fumihiko Takeuchi, Incremental construction properties in dimension two --- shellability, extendable shellability, vertex decomposability, in Proc. of the 12th Canadian conference on computational geometry, pp.65-72, 2000.
  2. Sonoko Moriyama, Ayumu NAGAI and Hiroshi Imai, Fast and Space Efficient Algorithms for Deciding Shellability of Simplicial Complexes of Large Size Using h-assignments, in Proc. of the 1st International Congress of Mathematical Software (ICMS'02), World Scientific, pp.82-92, 2002.
  3. Hiroki Nakayama, Sonoko Moriyama, Komei Fukuda and Yoshio Okamoto, Comparing the strengths of the non-realizability certificates for oriented matroids, in Proc. of the 4th Japanese-Hungarian Symposium on Discrete Mathematics on Its Applications, pp.243-249, 2005.
  4. Jiro Nishitoba, Kimikazu Kato, Sonoko Moriyama, Hiroki Nakayama and Hiroshi Imai, Smallest Enclosing Balls and an Effective Calculation of a Quantum Channel Capacity, in Proc. of MEMICS2006, pp.145-150, 2006.
  5. Hiroki Nakayama, Sonoko Moriyama and Komei Fukuda, Realizations of non-uniform oriented matroids using generalized mutation graphs, in Proc. of the 5th Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, pp.242-251, 2007.
  6. Toshiaki Takahashi, Hiroshi Imai, Sonoko Moriyama and David Avis, Quantum correlation and semidefinite relazation through 2-prover 1-round interactive proof, in Proc. of MEMICS2007, pp.217-224, 2007.
  7. David Avis, Hiroyuki Miyata and Sonoko Moriyama, A family of polytopal digraphs that do not satisfy the shelling property, in Proc. of the 6th Japanese-Hungarian Symposiun on Discrete Mathematics and Its Applications, pp.236-246, 2009.

Technical Reports

  1. David Avis and Sonoko Moriyama, On Combinatorial Properties of Linear Program Digraphs, Les Cahiers du Gerad, G-2008-08(10 pages), February, 2008.

Presentations

  1. Sonoko Moriyama and Fumihiko Takeuchi, Incremental construction properties in dimension two --- shellability, extendable shellability, vertex decomposability, Discrete and Algorithmic Geometry (Euroconference), 2000.
  2. 森山園子: h-vector による shellability 判定, 2000年度応用数学合同研究集会, 龍谷大学, 2000/12/20-22.
  3. 森山園子: 単体的複体の shellability 判定, 組合せ数学セミナー(COmbinatorial Mathmatics SEminar), 東京大学駒場キャンパス15号館, 2001/1/15.
  4. 森山園子: 単体的複体の shellability 判定, 情報処理学会 AL-80-11, 広島大学工学部, 2001/9/25.
  5. 八森正泰・森山園子: 単体的複体のファセット*リッジ接続グラフとシェラビリティー, 2001年度応用数学合同研究集会, 龍谷大学, 2001/12/19-21 (speaker: 八森正泰).
  6. 森山園子: 単体的複体の shellability 判定, 東北大学大学院情報科学研究科 学術振興ワークショップ「離散システムとアルゴリズム」, 2002/3/18-19.
  7. 森山園子: h-assignment から見た単体的複体の shelling 集合とその解析, 京都大学 アルゴリズム・計算量・数理計画・OR・etc. 合同研究会(KIDS), 京都大学数理解析研究所, 2002/7/16.
  8. 森山園子: h-assignment から見た単体的複体の shelling 集合とその解析, 最適化の数理とアルゴリズム, 京都大学数理解析研究所, 2002/7/17-19.
  9. Sonoko MORIYAMA, Ayumu NAGAI & Hiroshi Imai: Fast and Space Efficient Algorithms For Deciding Shellability of Simplicial Complexes of Large Size Using $h$-assignments, to appear in Proc. of International Congress of Mathematical Software (ICMS'02), Beijing, China, 2002/8/17-19.
  10. 八森正泰・森山園子: 単体的複体のシェラビリティーの多面体的記述, 2002年度応用数学合同研究集会, 龍谷大学, 2002/12/19-21 (speaker: 八森正泰).
  11. 森山園子: h-assignmentを用いた逆探索による単体的複体のshellability判定, 2002年度応用数学合同研究集会, 龍谷大学, 2002/12/19-21.
  12. Sonoko Moriyama: The structure of all shellings in a shellable simplicial complex --- Analyzation by $h$-assignments, Barbados Undercurrent Workshops on Polytopes, Games and Matroids, Holetown, Barbados, 2003/3/11-15.
  13. Masahiro Hachimori & Sonoko Moriyama: Shellability of simplicial complexes and optimization in acyclic orientations, 18th International Symposium on Mathematical Programming, Copenhagen, Denmark, 2003/8/18-22.
  14. Komei Fukuda, Sonoko Moriyama & Yoshio Okamoto: Non-LP orientations, nonlinear shellings and nonrepresentable oriented matroids, operations research seminars, ETH Lawsanne, 2004/2/14.
  15. Komei Fukuda, Sonoko Moriyama & Yoshio Okamoto: Non-LP orientations, nonlinear shellings and nonrepresentable oriented matroids, optimization seminars, ETH Zurich, 2004/2/18.
  16. Komei Fukuda, Sonoko Moriyama & Yoshio Okamoto: Non-LP orientations, nonlinear shellings and nonrepresentable oriented matroids,The computational algebra seminar No.22, Kobe, 2004/4/5.
  17. Komei Fukuda, Sonoko Moriyama & Yoshio Okamoto: Non-LP orientations, nonlinear shellings and nonrepresentable oriented matroids, 2004年5月 コンピュテーション研究会, Fukuoka, 2004/5/20.
  18. 森山園子: Holt-Klee 条件から見た有向マトロイドの実現不可能性, 2004年度第11回SAOR, 東京大学工学部, 2004/10/2.
  19. 中山裕貴・森山園子・福田公明・岡本吉央: Biquadratic final polynomial による有向マトロイドの実現不可能性判定, 第99回アルゴリズム研究会, 東京大学医科学研究所, 2005/1/20 (speaker: 中山裕貴).
  20. 森山園子・岡本吉央: 5次元の PLCP-向き付けと偶数出次数予想, 2004年度研究集会「最適化:モデリングとアルゴリズム」, 統計数理研究所, 2005/3/22-24.
  21. Sonoko Moriyama & Yoshio Okamoto: PLCP-orientations in dimension five and the even out-degree conjecture, Optimization days 2005, Montreal, Canada, pp.72, 2005/5/9-11.
  22. Hiroki Nakayama, Sonoko Moriyama, Komei Fukuda & Yoshio Okamoto:Comparing the strengths of the non-realizability certificates for oriented matroids, Optimization days 2005, Montreal, Canada, pp.72, 2005/5/9-11.
  23. 西鳥羽二郎・森山園子・中山裕貴,最小包含球問題から得られる cube グラフの向き付け, 第102回アルゴリズム研究会, 大阪大学, 2005/9/16.
  24. 森山園子・中山裕貴・福田公明・岡本吉央, 有向マトロイドの実現不可能性を与える性質の比較, 日本応用数理学会2005年度年会, 東北大学, 2005/9/23-25.
  25. Jiro Nishitoba, Sonoko Moriyama, Hiroki Nakayama, Hiroshi Imai: The Representation of SEBP Orientation by PLCP Orientation, 一般論文, FIT2006(第5回情報科学技術フォーラム), 2006/Sep/5-6.
  26. 西鳥羽二郎・森山園子・中山裕貴・今井浩: SEB 向き付けにおける Holt-Klee 条件, 日本応用数理学会2006年度年会, 筑波大学, 2006/9/16-18.
  27. Jiro Nishitoba, Kimikazu Kato, Sonoko Moriyama, Hiroki Nakayama, Hiroshi Imai: Smallest Enclosing Balls and an Effective Calculation of a Quantum Channel Capacity, MEMICS 2006, 2006/10/27-29.
  28. 森山園子: 組合せ幾何学について: シェラビリティーなど, 東北大学数学教室情報学セミナー, 東北大学, 2007.
  29. Hiroki Nakayama, Sonoko Moriyama and Komei Fukuda, Three characteristic rank-4 oriented matroids, International Workshop on Combinatorics 2007, University of Keio, 2007/6/6-13.
  30. Yoshitake Matsumoto, Sonoko Moriyama, Hiroshi Imai: Enumeration of Matroids by Reverse Search and Its Applications, KyotoCGGT2007, 2007/6/11-15.
  31. Hiroyuki Miyata, Sonoko Moriyama, Hiroshi Imai: Determining the non-realizability of oriented matroids by semidefinite programming, KyotoCGGT2007, 2007/6/11-15.
  32. Sonoko Moriyama, Hiroyuki Miyata and Hiroshi Imai: Approach to the realizability problem of oriented matroids by seminidefinite programming, Second Mathematical Programming Society International Conference on Continuous Optimization ICCOPT II & MOPTA-07, McMaster University, Canada, 2007/8/13-16.
  33. Toshiaki Takahashi, Hiroshi Imai and Sonoko Moriyama: Maximum quantum violation of Bell inequalities as 2-Prover 1-Round Game, AQIS(Asian Conference on Quantum Information Science) 2007, 京都, 2007.
  34. Toshiaki Takahashi, Sonoko Moriyama, Hiroshi Imai and David Avis: Formulation of the maximum quantum violation of Bell inequalities by 2-prover 1-round interactive proof, ナノ量子情報エレクトロニクスシンポジウム・ポスターセッション, 東京大学, 2007.
  35. 森山園子:幾何構造の組合せ原理, 「ミクロの形・マクロの形研究集会」, 明治大学先端数理科学インスティテュート, 2008/3/3-4.
  36. 森山園子, 宮田洋行, 今井浩: 有向マトロイドの実現不可能性問題における半正定値計画問題の有用性, 応用数理学会研究部会連合発表会(離散システム研究部会), 首都大学東京, 2008/3/8-9.
  37. 森山園子: 有向マトロイドノ実現可能性問題における様々な展開, 日本オペレーションズ・リサーチ学会「計算と最適化」研究部会, 上智大学, 2008/6/28.
  38. Toshiaki Takahashi, Sonoko Moriyama, Hiroshi Imai: A Note on the Upper Bound Derived by Semide?nite Programming for the Maximum Quantum Violation of Bell Inequalities, AQIS(Asian Conference on Quantum Information Science) 2008, KIAS, Seoul, Korea, 2008/8/27.
  39. Hiroyuki Miyata, Sonoko Moriyama, Hiroshi Imai: Analyzing Geometric Realizability Problems by Semidefinite Programming, in Proc. of Kyoto RIMS Workshop on Computational Geometry and Discrete Mathematics, pp.6-9, RIMS, Kyoto University, 2008/10/16.
  40. Yoshitake Matsumoto, Sonoko Moriyama, Hiroshi Imai, David Bremner: Large Scale Matroid Enumeration and Analysis of Orientation, in Proc. of Kyoto RIMS Workshop on Computational Geometry and Discrete Mathematics, pp.10-13, RIMS, Kyoto University, 2008/10/16.

Private Pages


etc.


Links


Sonoko Moriyama
E-mail: moriso AT is DOT s DOT u-tokyo DOT ac DOT jp