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ABSTRACT
Answering reachability queries on directed graphs is ubiqui-
tous in many applications involved with graph-shaped data
as one of the most fundamental and important operations.
However, it is still highly challenging to efficiently process
them on large-scale graphs. Transitive-closure-based meth-
ods consume prohibitively large index space, and online-
search-based methods answer queries too slowly. Labeling-
based methods attain both small index size and query time,
but previous indexing algorithms are not scalable at all for
processing large graphs of the day. In this paper, we pro-
pose new labeling-based methods for reachability queries,
referred to as pruned landmark labeling and pruned path la-
beling. They follow the frameworks of 2-hop cover and 3-
hop cover, but their indexing algorithms are based on the
recent notion of pruned labeling and improve the indexing
time by several orders of magnitude, resulting in applica-
bility to large graphs with tens of millions of vertices and
edges. Our experimental results show that they attain re-
markable trade-offs between fast query time, small index
size and scalability, which previous methods have never been
able to achieve. Furthermore, we also discuss the ingredi-
ents of the efficiency of our methods by a novel theoretical
analysis based on the graph minor theory.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks
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1. INTRODUCTION
Answering reachability queries, determining whether there

is a directed path from a vertex s to a vertex t on a given
directed graph G = (V,E), is ubiquitous as one of the
most basic and important operations on graphs. For ex-
ample, in query engines such as SPARQL and XQuery, it is
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one of the fundamental building blocks for answering user
queries [11, 2]. In computational biology, it is employed
for representing and analyzing molecular and cellular func-
tions [17]. In program analysis, it enables precise interpro-
cedural dataflow analysis [13,12].

Due to its importance and recent emergence of large graph-
shaped data, many indexing schemes have been proposed in
the recent database community [18,8,3,19,20,5,15,4,7]. Nev-
ertheless, efficiently processing reachability queries on large
graphs is still a highly challenging task since current state-
of-the-art methods suffer from drawback of either scalability
or large query time.

One of the most classical approaches is to compress transi-
tive closure [16,18]. However, even with compression, space
complexity is still essentially quadratic, and thus this ap-
proach is not promising with regard to scalability. In con-
trast, methods that conduct a graph search guided by pre-
computed indices for answering each query achieve better
scalability due to small indexing time and index size [3, 19,
20]. However, their query time is several orders of magni-
tude slower than other methods, which is critical for certain
applications such as SPARQL engines and XQuery engines,
as sometimes answers to thousands or millions of reachabil-
ity queries are necessary to process one user query [19].

Methods based on labeling to vertices have also been stud-
ied for a long time [5, 15, 4, 7]. They precompute a label for
each vertex so that a reachability query can be answered
from the labels of two endpoints. This approach is promis-
ing since, after obtaining small labels, they attain both fast
query time and small index size. However, computing such
labels has been challenging and highly expensive, thus lim-
iting the scalability of this approach.

1.1 Contributions
To address these issues, in this paper, we propose new

labeling-based methods for reachability queries, referred to
as pruned landmark labeling and pruned path labeling. Since
they are labeling-based methods, they achieve fast query
time and small index size, but their indexing algorithms
are significantly more efficient than previous algorithms. As
a result, they overcome the drawback of the scalability of
labeling-based methods and attain remarkable trade-offs be-
tween query time, index size and scalability, which previous
methods have never been able to achieve.

As the labeling framework (i.e., index data structure and
query algorithm), our pruned landmark labeling follows 2-
hop cover [5], which stores sets of vertices LOUT(v) and
LIN(v) as the label for each vertex v so that a reachability
query (u, v) can be answered by testing whether LOUT(u)



and LIN(v) have non-empty intersection (see Section 3). By
contrast, our pruned path labeling follows 3-hop cover [7],
which is a generalization of 2-hop cover and stores intervals
of paths as labels (see Section 4.1). For both frameworks,
while it is conjectured that small labels exist for real-world
networks [5], previous indexing algorithms are too slow and
cannot be applied to large graphs of the day.
Our key contributions are the new indexing algorithms of

pruned landmark labeling and pruned path labeling. They
are based on a recent shortest-path querying method [1].
To compute labels, in contrast to previous methods that
solve indirect optimization problems with approximate algo-
rithms, our algorithms conduct pruned graph searches and
directly add label entries to labels of visited vertices. Note
that our application of the shortest-path querying method [1]
involves several non-trivial challenges. For example, while
the shortest-path querying method is tailored to networks
such as social networks and web graphs, we design the pro-
posed methods for real-world directed acyclic graphs with
different structures. Moreover, the indexing algorithm of
pruned path labeling is an essentially new algorithm, which
computes label entries from all the vertices in a path by just
one pruned search.
Our experimental results in Section 6 show that (1) they

have good scalability and can be applied to graphs with
tens of millions of vertices and edges, (2) their query time is
the fastest among the methods and two orders of magnitude
faster than online-search-based methods, and (3) their index
size is an order of magnitude smaller than transitive-closure-
based methods.
Furthermore, we also theoretically discuss why our meth-

ods are efficient on real-world graphs in Section 5. In addi-
tion to the fact that both proposed methods can exploit tree-
like structures of small treewidth, we present a novel analysis
based on the graph minor theory proving that our pruned
path labeling method can exploit a minor-closed property,
which leads to efficiency in various kinds of structures.

Independence from arXiv:1305.0502 [6]. We have re-
cently noticed that an approach similar to our pruned land-
mark labeling method is independently proposed by Jin and
Wang [6].

2. PRELIMINARIES
Notations: Let G = (V,E) be a directed graph. We de-
note the number of vertices |V | and the number of edges
|E| by n and m, respectively. For two vertices s, t ∈ V , we
define reach(s, t) as true if there is a path from s to t and
false otherwise. A reachability query (s, t) asks whether
reach(s, t) is true or not. We denote the children of v by
children(v) and the parents of v by parents(v). We denote
the indegree and outdegree of v by dIN(v) and dOUT(v).

Strongly Connected Components: We can safely as-
sume that the input graph is always a directed acyclic graph
(DAG). Note that all vertices in a strongly connected com-
ponent (SCC) of G is equivalent in terms of reachability
since they are reachable each other. Thus, G can be con-
verted into a DAG by SCCs, preserving the information of
reachability among vertices.

Problem Definition: The problem is to precompute some
index for a given DAG G = (V,E), and to answer reach-
ability queries quickly by using the index, and the DAG if
necessary. We assume that all reachability queries are given

after indexing. That is, we cannot create an index special-
ized for a particular set of queries.

3. PRUNED LANDMARK LABELING
Given a DAG G = (V,E), we create two types of la-

bels LOUT(v), LIN(v) ⊆ V for each vertex v. Upon a query
(s, t), we return Query(s, t, LOUT, LIN) defined as follows.
Query(s, t, LOUT, LIN) is true if LOUT(s) and LIN(t) have a
non-empty intersection. Otherwise, Query(s, t, LOUT, LIN)
is false. We will construct LOUT and LIN so that, for every
s, t ∈ V , Query(s, t, LOUT, LIN) = reach(s, t) holds. Naive
calculation of Query(s, t, LOUT, LIN) needs O(ls ·lt) time for
ls = |LOUT(s)| and lt = |LIN(t)|. However, if LOUT(s) and
LIN(t) are sorted, it can be done in O(ls + lt) time by scan-
ning both labels from their heads to tails simultaneously.

For simplicity, we first describe a naive algorithm to con-
struct LOUT and LIN without pruning, and then proceed to
an algorithm with pruning.

3.1 Naive Algorithm
Let V = {v1, . . . , vn} be the vertex set. We incremen-

tally construct labels by processing v1, . . . , vn in this order.
Though the choice of this ordering has a large impact on the
performance, we just let it arbitrary at this moment.

To make exposition easier, we define Lk
OUT and Lk

IN as
LOUT and LIN, respectively, right after processing vk. In the
beginning, we start with L0

OUT(v) = L0
IN(v) = ∅ for every

v ∈ V . Suppose that we have constructed Lk−1
OUT and Lk−1

IN .

Then, we construct Lk
OUT and Lk

IN by processing vk. First
we describe how to construct Lk

IN. We conduct a BFS from
vk, and add vk to the labels of vertices that are visited during
the BFS. Specifically, we set Lk

IN(v) to Lk−1
IN (v) ∪ {vk} if v

is visited during the BFS, otherwise set Lk
IN(v) to Lk−1

IN (v).

Similarly, to construct Lk
OUT, we conduct a reversed BFS

from vk, for which we traverse edges backwards. That is,
we set Lk

OUT(v) to Lk−1
OUT(v)∪ {vk} if v is visited during the

reversed BFS, otherwise set Lk
OUT(v) to Lk−1

OUT(v).
We use Ln

OUT and Ln
IN to answer reachability queries. Ob-

viously, they satisfy thatQuery(s, t, Ln
OUT, L

n
IN) = reach(s, t)

since every vertex has all information about which vertices
it can reach and it can be reached from. We also note that
Query(s, t, Lk

OUT, L
k
IN) = true if and only if there is a path

from s to t passing through one of v1, . . . , vk. The proof is
similar to [1], and we omit.

3.2 Pruned Landmark Labeling
The naive algorithm costs too much time and space since

we conduct BFSs 2n times, which results in O(nm) time. In
pruned landmark labeling, we stop BFSs by pruning vertices
whose reachability can be answered correctly from the labels
constructed so far.

Suppose that we are visiting a vertex v during the BFS
from a vertex vk, and that v can be shown to be reachable
from vk by existing labels, that is, Query(vk, v, L

k−1
OUT, L

k−1
IN )

is true. Then, we prune the vertex v and do not search
descendants of v. Similarly, when we visit v during the re-
versed BFS from vk and Query(v, vk, L

k−1
OUT, L

k−1
IN ) is true,

then we prune the vertex v.
Though we have pruned vertices, Lk

OUT and Lk
IN still sat-

isfy the property that Query(s, t, Lk
OUT, L

k
IN) = true if and

only if there is a path from s to t passing through one of
v1, . . . , vk. The correctness of the pruning is proved in [1].



The performance of pruned landmark labeling for short-
est path queries depends heavily on the vertex ordering, as
Akiba et al. have shown by experimental comparisons [1].
Thus, to prune more vertices, we want to find a vertex or-
dering v1, . . . , vn such that most reachable pairs (s, t) sat-
isfy that s can reach t via an early vertex in the ordering.
We adopt the strategy InOut where we sort vertices by
(dIN(v) + 1) × (dOUT(v) + 1) in decreasing order, since it
performed well in preliminary experiments.

4. PRUNED PATH LABELING
In this section, we first propose the pruned path label-

ing method, which is based on pruned landmark labeling in
Section 3. Then we discuss heuristics to select such paths in
Section 4.2.

4.1 Overview
The idea of pruned path labeling is iteratively selecting

paths and conducting BFSs from these paths. The main dif-
ference from pruned landmark labeling is that we use paths
instead of vertices to start BFSs with. Then, we store which
vertices can reach these paths or can be reached from these
paths. If a query (s, t) is given, we find a path we have se-
lected with two vertices u, v such that there is a path of the
form s− u− v− t. In this sense, our method can be seen as
a 3-hop cover [7]. The detail is given in the following.
For a given DAGG = (V,E), we take l paths P1, P2, . . . , Pl

such that
∪l

k=1 Pk = V . Let {vk,1, vk,2, . . . , vk,pk} denote
the sequence of vertices that forms the path Pk, where pk =
|Pk|. We construct two types of labels LOUT(v), LIN(v) ⊆
N × N. It is supposed that, if (i, j) ∈ LOUT(v) for some
vertex v ∈ V , then v can reach vi,j . Similarly, it is supposed
that, if (i, j) ∈ LIN(v) for a vertex v ∈ V , then v can be
reached from vi,j .
We note that, for any vertex v ∈ V and i, we only have

to store at most one pair (i, j) in LOUT(v) to answer reach-
ability. To see this, suppose that v can reach vi,j for some
i and j. Then, v can reach every vi,j′ for j ≤ j′ ≤ pi
since vi,j can reach vi,j′ through the path Pi. Thus, we can
choose an integer jmin such that v can reach vi,j if and only
if jmin ≤ j ≤ pi. Therefore, we only have to store the pair
(i, jmin) in LOUT(v) to answer the reachability of vertices in
Pi from v. Conversely, for each v ∈ V and i, we only have
to store one pair (i, j) in LIN(v).
Upon a query (s, t), we return Query(s, t, LOUT, LIN) de-

fined as follows.

Query(s, t, LOUT, LIN) =


true if ∃i, j, j′ ∈ N s.t. j ≤ j′,

(i, j) ∈ LOUT(s),

(i, j′) ∈ LIN(t),

false otherwise.

In words, Query(s, t, LOUT, LIN) is true if and only if there
are a path Pi and two integers j, j′ with j ≤ j′ such that s
can reach vi,j and t can be reached from vi,j′ . We emphasize
again that vi,j can reach vi,j′ through Pi. We can compute
Query(s, t, LOUT, LIN) in O(|LOUT(s)|+ |LIN(t)|) time by a
merge-sort-like algorithm if LOUT(s) and LIN(t) are sorted
by path index.

4.1.1 Label Construction
Now we describe how to construct labels LOUT and LIN.

Again, we start with a naive algorithm. We basically con-

Algorithm 1 Conduct pruned BFSs from Pk

1: procedure PrunedBFS(G,Pk, L
k−1
OUT, L

k−1
IN )

2: p← the number of vertices in Pk

3: Lk
OUT[v], L

k
IN[v]← Lk−1

OUT[v], L
k−1
IN [v] for all v ∈ V

4: Q← an empty queue
5: U ← ∅
6: for i← p . . . 1 do
7: s← Pk[i]
8: Enqueue s onto Q
9: while Q is not empty do
10: Dequeue v from Q
11: U ← U ∪ {v}
12: if Query(s, v, Lk−1

OUT, L
k−1
IN ) is false then

13: Lk
IN[v]← Lk

IN[v] ∪ {(k, i)}
14: for all u ∈ children(v) do
15: if u /∈ U then
16: Enqueue u onto Q

17: U ← ∅
18: for i← 1 . . . p do
19: s← Pk[i]
20: Enqueue s onto Q
21: while Q is not empty do
22: Dequeue v from Q
23: U ← U ∪ {v}
24: if Query(s, v, Lk−1

OUT, L
k−1
IN ) is false then

25: Lk
OUT[v]← Lk

OUT[v] ∪ {(k, i)}
26: for all u ∈ parents(v) do
27: if u /∈ U then
28: Enqueue u onto Q

29: return (Lk
OUT, L

k
IN)

duct BFSs from paths P1, P2, . . . , Pl in this order. Since la-
bels LOUT and LIN grow gradually during the algorithm, we
define Li

OUT and Li
IN as LOUT and LIN obtained right after

processing the i-th path Pi. In particular, we define L0
OUT(v)

and L0
IN(v) as ∅ for all v ∈ V , and the pair Ll

OUT(v) and
Ll

IN(v) is the label finally output by the algorithm. Suppose
that we have already constructed Lk−1

OUT and Lk−1
IN . Then,

we construct Lk
OUT and Lk

IN as follows.
First, we conduct BFSs from vertices in Pk in descending

order, that is, from vk,pk to vk,1. In the BFS from the vertex

vk,j , we update Lk
IN to Lk−1

IN (v) ∪ {(k, j)} if v is visited.

Otherwise, we set Lk
IN to Lk−1

IN (v). When performing a BFS
from vk,j , we do not have to visit vertices that are already
visited in previous BFSs since they already have a pair (k, j′)
for some j′ ≥ j.

After BFSs to construct Lk
IN are finished, we conduct re-

versed BFSs by traversing edges backwards from vertices
in Pk in ascending order, that is, from vk,1 to vk,pk . In
the reversed BFS from the vertex vk,j , we update Lk

OUT to
Lk−1

OUT(v) ∪ {(k, j)} if v is visited, otherwise we set Lk
OUT to

Lk−1
OUT(v). As in the previous case, we do not have to visit

vertices that are previously visited by reversed BFSs.
Now we improve the naive algorithm by introducing prun-

ing. The idea is the same as pruned landmark labeling.
Suppose that we are processing a vertex v in the BFS from
a vertex vk,j for some k and j. Then, we issue a query
Query(vk,j , v, L

k−1
OUT, L

k−1
IN ). If the answer is true, we prune

v, that is, we stop the BFS at v. When we are processing
a vertex v in the reversed BFS from a vertex vk,j for some
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Figure 1: An example of pruned path labeling. Vertex color indicates its status: Red is a start point of BFSs,
blue is a vertex being searched, gray is a pruned vertex, and brown is a vertex already used as a start point.

k and j, we issue a query Query(v, vk,j , L
k−1
OUT, L

k−1
IN ) in-

stead. If the answer is true, we prune v. A pseudocode for
constructing LOUT and LIN is shown in Algorithm 1.
Figure 1 shows an example of pruned path labeling. Three

paths P1 = {v1,1, v1,2, v1,3, v1,4}, P2 = {v2,1, v2,2, v2,3}, and
P3 = {v3,1, v3,2, v3,3} are selected. Then, BFSs are con-
ducted from v1,4, v1,3, v1,2, and v1,1 in this order (Fig-
ure 1a) to obtain L1

IN. We add a pair (1, 2) to L1
IN(v2,2),

L1
IN(v2,3), and L1

IN(v3,3). Also, we add (1, 1) to L1
IN(v2,1).

No pruning occurs during BFSs from P1. Then similarly,
reversed BFSs are conducted from v1,1, v1,2, v1,3, and v1,4
in this order (Figure 1b) to obtain L1

OUT. For example,
LOUT(v2,3) obtains a pair (1, 3). Next, we conduct BFSs
from vertices in P2 in an appropriate order. When v1,3
is visited during the BFS from v2,3, we issue the query
Query(v2,3, v1,3, L

1
OUT, L

1
IN). The query is true since (1, 3)

∈ L1
OUT(v2,3) and (1, 3) ∈ L1

IN(v1,3). Therefore, v1,3 is
pruned and we no longer continue the search from v1,3 (Fig-
ure 1c). We continue this process until we finish performing
BFSs from all the paths (Figure 1d,1e,1f).
A potential drawback of adopting paths instead of vertices

is that it may increase the index size. This is because that
each element in a label is a pair of integers (a path index
and an index of a vertex in the path) instead of one integer
(a vertex number) as opposed to pruned landmark labeling.
Therefore, we do not have any benefit if we cannot find long
paths. Also, it is practically difficult to cover all the vertices
by long paths. To address these issues, we combine the
two methods. That is, for some constant a ≥ 0, we perform
pruned path labeling from a paths and then perform pruned
landmark labeling from remaining vertices. Furthermore, we
stop taking paths if the length of the path is shorter than b.
From preliminary experiment, we decided to choose a = 50
and b = 10 in experiments in Section 6.

4.2 Path Selection
As we already mentioned in Section 3, vertex ordering

strategies largely influence the performance of pruned land-
mark labeling. Correspondingly, effectiveness of pruning
should depend on how to select paths in pruned path label-
ing. We empirically compared a few path selection strategies
and found that the strategy DPInOut performed the best
among them.
In DPInOut, we first assign a value to each vertex. The

value assigned to a vertex v is (dIN(v)+1)× (dOUT(v)+1) if
v is not selected as a part of a path before, and 0 otherwise.
Then, we select the path in which the sum of the value
of vertices is maximized, by dynamic programming on the
DAG. After selecting 50 paths, we order remaining vertices

by InOut. The idea behind DPInOut is to select paths
that contain important vertices as many as possible.

5. THEORETICAL ANALYSIS
In this section, we give theoretical evidence that our meth-

ods perform well on real-world networks. Due to the space
limitation, we only show two main theorems and omit the
proofs. See [14] for the definitions of terms.

Akiba et al. [1] showed that their method works efficiently
on bounded-treewidth graphs. Since pruned landmark label-
ing for reachability is similar to their method, we can use
the same proof and we obtain the following.

Theorem 1. Let G be a digraph whose underlying graph
has bounded treewidth. Then, there is a strategy of selecting
vertices for which pruned landmark labeling on G outputs a
label of size O(logn) for each vertex. Furthermore, we can
find the strategy in O(n + m) time. (Constants depending
on treewidth are hidden in the O(·) notations.)

The theorem implies that index size is O(n logn) and
query time is O(logn). We note that a complex network
is known to have a core and fringes attached to it [9]. Since
fringes are supposed to have small treewidth, this theo-
rem implies that pruned landmark labeling performs well
on complex networks.

Furthermore, we show that pruned path labeling can effi-
ciently process graphs satisfying a minor-closed property.

Theorem 2. Let P be a minor-closed property and G be
a digraph whose underlying graph satisfies P . Then, there is
a strategy of choosing paths for which pruned path labeling on
G outputs a label of size O(logn) for each vertex. (Constants
depending on P are hidden in the O(·) notations.)

Again, the theorem implies that index size is O(n logn)
and query time is O(logn). We note that examples of minor-
closed properties include having bounded treewidth, pla-
narity and bounded genus. Thus, pruned path labeling is not
only practically but also theoretically stronger than pruned
landmark labeling.

6. EXPERIMENTS
We show experimental results in this section. We com-

pared our two proposed methods with state-of-the-art ex-
isting methods on both real and synthetic graphs. These
methods are evaluated in terms of query time, index size,
and indexing time. As query time, we report the average
time over one million random queries.



Table 1: Real-world datasets
Dataset |V |SCC |E|SCC

ff/successors 1,858,504 2,009,541
citeseerx 6,540,399 15,011,259
cit-patents 3,774,768 16,518,948
go-uniprot 6,967,956 34,770,235
uniprot22m 1,595,444 1,595,442
uniprot100m 16,087,295 16,087,293
uniprot150m 25,037,600 25,037,598

Table 2: Average query time (µs)
Dataset PLL PPL GRAIL IL PWAH

ff/successors 0.085 0.133 0.279 0.154 0.202
citeseerx 0.124 0.164 27.946 0.103 0.214
cit-patents 0.253 0.296 11.591 0.292 15.451
go-uniprot 0.156 0.194 0.520 0.233 0.521
uniprot22m 0.083 0.122 0.403 0.173 0.243
uniprot100m 0.133 0.197 0.743 0.292 0.361
uniprot150m 0.153 0.223 0.776 0.248 0.351

6.1 Experimental Setup
We conducted all the experiments on Linux server with

Intel Xeon X5675 3.07GHz and 288GB memory. We only
used one core on all the experiments. Pruned landmark la-
beling (PLL) and pruned path labeling (PPL) are compared
with three state-of-the-art existing methods, GRAIL [19],
interval list (IL) [10] and PWAH [18]. GRAIL is a graph
traversal method exploiting labels created by random DFSs,
and one of the most memory efficient methods for reacha-
bility queries. IL and PWAH are methods that construct
compressed transitive closure and they were shown to be
the fastest methods for answering reachability queries on
large graphs. The implementations of GRAIL and PWAH
are by their authors, and the implementation of IL is by
the authors of PWAH. We set a parameter k for GRAIL to
2. All algorithms are implemented in C++ using standard
template library (STL).
We used real-world networks with more than a million

vertices that have been used in the literature [18, 19]. The
numbers of vertices and edges (after contracting SCCs) are
shown in Table 1.

ff/successors: This is a graph used for source code analysis
of Firefox [18].

citeseerx, cit-patents: These are citation networks from
CiteSeerX1 and US patents2 [19].

go-uniprot: This is the joint graph of Gene Ontology terms
and annotation files from UniProt3 [19].

uniprot22m, uniprot100m, and uniprot150m: These
are RDF graphs from UniProt database [19]. We note that
underlying graphs of these graphs are very close to trees.

We also conducted experiments on even larger synthetic
graphs to show the scalability of our methods. These graphs
are created as follows. We first randomly determine the
topological order of 10 million vertices. Then we randomly
connect two non-adjacent vertices |E| times, where |E| is
chosen as a parameter. Note that the direction of each edge
is uniquely determined by the topological order.

1http://citeseer.ist.psu.edu/
2http://snap.stanford.edu/data/
3http://www.uniprot.org/

Table 3: Index size (MB)
Dataset PLL PPL GRAIL IL PWAH

ff/successors 122.3 91.6 29.7 40.0 34.1
citeseerx 122.0 126.7 104.6 441.3 156.0
cit-patents 664.6 691.2 60.4 22444.5 5593.1
go-uniprot 263.1 273.5 111.5 792.7 255.9
uniprot22m 19.4 19.4 25.5 19.6 19.5
uniprot100m 206.8 206.8 257.4 223.0 218.8
uniprot150m 334.0 334.0 400.6 373.8 366.2

Table 4: Indexing time (sec)
Dataset PLL PPL GRAIL IL PWAH

ff/successors 10.46 8.19 1.08 7.84 5.02
citeseerx 23.13 45.42 7.65 6.70 16.03
cit-patents 192.05 239.95 8.24 397.04 847.83
go-uniprot 26.60 29.74 5.78 18.33 31.10
uniprot22m 2.82 3.02 0.96 0.96 1.23
uniprot100m 30.80 32.99 12.39 10.64 14.39
uniprot150m 49.48 53.56 20.52 17.21 24.16

6.2 Performance on Real-World Networks
First, we compared PLL and PPL with existing methods

on real-world networks. Tables 2, 3, and 4 show the sum-
mary of our experiments.

Table 2 shows the query time on real-world networks. PLL
and PPL outperform all the other methods in general. IL
also performs quite well especially on citeseerx, but in many
cases, PLL is about twice faster than IL. This is possibly
because of compactness of labels and simplicity of the query
processing procedure of PLL. PPL is slightly slower than
PLL since answering queries by PPL is a little more compli-
cated than PLL. PWAH and GRAIL are comparable on very
sparse graphs, but they get very slow on the other graphs.

Table 3 suggests that the index size of PLL and PPL are
reasonable, though there is no doubt that GRAIL is the most
memory-efficient method. On uniprot22m, uniprot100m,
and uniprot150m, PLL and PPL perform the best, but the
difference on these datasets is not very significant. This
may be due to the sparseness of these graphs, which makes
it easier to compress the transitive closure by using IL or
PWAH. IL and PWAH perform better than PLL and PPL
on ff/successors. On the other hand, PLL and PPL outper-
form IL and PWAH on citeseerx and cit-patents. The index
size of PLL and PPL is about 3% of IL and 12% of PWAH
on cit-patents. We can say that PLL and PPL are robust
in the sense that it only takes moderate space, less than
1GB, on all graphs in the experiments. As for the difference
between PLL and PPL, PLL is slightly more space-efficient
than PPL in most cases since we need two integers to repre-
sent each element in a label PPL whereas we only need one
integers in PLL. However, the result on ff/successors shows
that PLL has a potential to represent reachability in a more
efficient way than PPL in some cases.

Then we look at Table 4, which shows indexing time on
real-world networks. GRAIL constantly shows great per-
formance in indexing time since the number of elements in
labels is linear in the number of vertices. Still, indexing
time of PLL and PPL is acceptable, while they are rela-
tively slow. They are even faster than IL and PWAH on
cit-patents. This suggests that PLL and PPL work well on
large and mildly dense graphs. IL performs quite well ex-
cept on cit-patents, and PWAH needs approximately 1.5 to
2.5 times longer time than IL.
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Figure 2: Performance comparison on synthetic graphs. GRAIL answers queries slowly, and IL and PWAH
consume large index space, while our PLL and PPL achieve remarkable trade-offs.

6.3 Performance on Synthetic Graphs
Second, we compared PLL and PPL with existing meth-

ods on synthetic graphs. Query time, index size, and index-
ing time on synthetic graphs are shown in Figure 2. These
synthetic graphs have ten million vertices and number of
edges ranges from twenty million to fifty million. Note that
these figures are drawn with logarithmic-scale y-axis.
Figure 2a shows that PLL and PPL achieve very fast query

time. The query time of PLL, PPL and IL increase very
slowly as the number of edges becomes larger, within a mi-
crosecond even on the graph with 50 million edges. On the
other hand, the query time of GRAIL and PWAH grows fast
and exceeds 10 microseconds on that graph.
In Figure 2b, the index size of IL and PWAH become

larger drastically as the graph becomes dense. The index
size of PLL and PPL grow relatively slowly, and that of
GRAIL does not change by the number of edges.
Figure 2c shows that GRAIL outperforms other methods

in indexing time, especially on relatively dense graphs. PLL
and PPL are relatively slow on very sparse graphs. However,
these two methods overtake IL and PWAH as the graph
becomes dense.
As a whole, we can say that PLL and PPL outperform

other methods on relatively dense graphs, achieving very
fast query time and moderate index size. The index size
of IL and PWAH becomes very large on dense graphs, and
the query time of GRAIL and PWAH becomes very slow
on these graphs. These experimental results show that PLL
and PPL has a potential to handle real-world networks larger
than those we used in the experiments.
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