Linear-Time Enumeration of Maximal k-edge-connected Subgraphs in Large Networks by Random Contraction

Takuya Akiba *(U Tokyo)*
Yoichi Iwata *(U Tokyo)*
Yuichi Yoshida *(NII&PFI)*

Software available: http://git.io/mkecs
Cohesive Subgraphs
One of the most popular models:

k-core

- The maximal subgraph such that
- all vertices in it have degree at least k
Applications of k-core

Network Analysis
- Influencer analysis [KGH+10]
- Self-similarity, connectivity and hierarchy [AHDBV06, AhBV08]
- Analyzing cooperation in networks [CHK+07]

Fingerprinting & Visualization
- Protein interaction [Altaf-Ul-Amin+06]

Vaccination & Crime Prevention
- Vaccination [Kitsak+10]
- Detecting financial crime [DLMP11]
Serious Problem of k-core

The k-core model says:

This is one 17-core since all the vertices have degree ≥ 17

(a real subgraph from a co-author network)
Serious Problem of k-core

..., but, there seem to be three cohesive subgraphs

The k-core model cannot separate them 😞
The issue

• k-cores are sometimes not well connected

Recent solution [Zhou+, EDBT’12]

• Maximal k-Edge-Connected Subgraphs
• Use MkECSs instead of k-cores
New Model: M_kECS

They are three M_kECSs ($k=17$) ☺

(a real subgraph from a co-author network)
The existing algorithm [Zhou+, EDBT’12] is too slow!

• We address this issue

• We propose a much faster algorithm

• MkECS is now practical for large networks
Proposed Method
<Definition> Graph G is k-edge-connected

\iff remains connected after removing any $k - 1$ edges

\iff Size of minimum cut $\geq k$

<Problem> Decompose graph G into maximal subgraphs that are k-edge-connected. (The decomposition is unique.)
Find cuts with size $< k$ and decompose by them

$k = 3$

Common to the previous and proposed method
Algorithm Overview

One Iteration

Overall Algorithm

while $G \neq$ empty
1. if $\exists u \in V$ s.t. $\deg(u) < k$
 • Output and remove u
2. else
 • Contract a random edge

for sufficient number of times
• Apply above algo. for subgraphs
Outline

① High-level Description

② Implementation & Complexity

③ Number of iterations

Outline

One iteration

while $G \neq \text{empty}$

1. if $\exists u \in V$ s.t. $\deg u < k$
 • Output and remove u

2. else
 • Contract a random edge

for sufficient number of times

• Apply above algo. for subgraphs
Outline

1 High-level Description

2 Implementation & Complexity

3 Number of iterations

One iteration

while $G \neq$ empty
1. if $\exists u \in V$ s.t. $\deg(u) < k$
 • Output and remove u
2. else
 • Contract a random edge

for sufficient number of times
• Apply above algo. for subgraphs

Iterations
One Iteration \((k = 3)\)

while \(G \neq \text{empty}\)

1. if \(\exists u \in V\) s.t. \(\deg(u) < k\)
 - Output and remove \(u\)

2. else
 - Contract a random edge
One Iteration \((k = 3)\)

\[
\text{while } G \neq \text{ empty}
\]

1. \textbf{if } \exists u \in V \text{ s.t. } \deg(u) < k
 \begin{itemize}
 \item Output and remove \(u\)
 \end{itemize}

2. \textbf{else}
 \begin{itemize}
 \item Contract a random edge
 \end{itemize}
One Iteration \((k = 3)\)

\[
\textbf{while } G \neq \text{ empty} \\
1. \quad \textbf{if } \exists u \in V \text{ s.t. } \text{deg}(u) < k \\
 \quad \quad \cdot \text{Output and remove } u \\
2. \quad \textbf{else} \\
 \quad \quad \cdot \text{Contract a random edge}
\]
One Iteration \((k = 3)\)

while \(G \neq \) empty

1. if \(\exists u \in V\) s.t. \(\text{deg}(u) < k\)
 - Output and remove \(u\)

2. else
 - Contract a random edge
One Iteration ($k = 3$)

while $G \neq$ empty

1. if $\exists u \in V$ s.t. $\deg(u) < k$
 - Output and remove u

2. else
 - Contract a random edge
One Iteration \((k = 3)\)

\[
\text{while } G \neq \text{ empty}
\]

1. \(\text{if } \exists u \in V \text{ s.t. } \deg(u) < k\)
 - Output and remove \(u\)
2. \(\text{else}\)
 - \text{Contract a random edge}
One Iteration ($k = 3$)

while $G \neq$ empty
1. if $\exists u \in V$ s.t. $\deg(u) < k$
 • Output and remove u
2. else
 • Contract a random edge
One Iteration \((k = 3)\)

\[k = 3 \]

\[
\begin{align*}
\text{while } & G \neq \text{empty} \\
1. & \text{ if } \exists u \in V \text{ s.t. } \deg(u) < k \\
& \quad \text{ Output and remove } u \\
2. & \text{ else} \\
& \quad \text{ Contract a random edge}
\end{align*}
\]
One Iteration ($k = 3$)

\[
\text{while } G \neq \text{ empty} \\
1. \quad \text{if } \exists u \in V \text{ s.t. } \deg(u) < k \\
 \quad \quad \bullet \text{ Output and remove } u \\
2. \quad \text{else} \\
 \quad \quad \bullet \text{ Contract a random edge}
\]
One Iteration ($k = 3$)

while $G \neq$ empty
1. if $\exists u \in V$ s.t. $\deg(u) < k$
 • Output and remove u
2. else
 • Contract a random edge
One Iteration ($k = 3$)

while G ≠ empty

1. if $\exists u \in V$ s.t. $\deg(u) < k$
 - Output and remove u

2. else
 - Contract a random edge
One Iteration ($k = 3$)

Result
Removing a vertex with degree $< k$ ⇔ Separating by a cut with size $< k$

But, where should we contract?
→ We don’t know beforehand
→ We contract *randomly* (and repeat)
→ Is random really efficient? → **YES!** (good theoretical bounds)
When we successfully find a cut?

Or, when we fail to find the cut?

Success
When we contract all the vertices in one side before any cut edges

Fail
When we contract any cut edge before finding the cut
Random contraction has been a technique to design theoretical graph algorithms

- Min-cut [Karger, SODA’93]
- Steiner Cut, Node Multiway Cut [Chitnis+, FOCS’12]
- ...

Nice theoretical bound (our method also!)

The proposed method is the first empirically superior algorithm using random contraction
Previous vs. Proposed (MkECS algos)

Previous [Zhou+, EDBT’12]

<Min-cut Algorithm>
[Stoer, Wagner, ’97]

- 1 cut per 1 iteration
- Each iter. is slow

Simple application
Previous vs. Proposed (MkECS algos)

Previous [Zhou+, EDBT’12]

- **<Min-cut Algorithm>**
 - [Stoer, Wagner, ’97]

Proposed

- **<Min-cut Algorithm>**
 - [Karger, ’93]

- As a min-cut algorithm, slower than Stoer-Wagner

- Several substantial modifications

Simple application

- 1 cut per 1 iteration
- Each iter. is slow

- \(\geq 1 \text{ cuts} \) per 1 iteration
- Each iter. in **linear-time**
Outline

① High-level Description

② Implementation & Complexity

③ Number of iterations

One iteration

while $G \neq \text{empty}$

1. if $\exists u \in V$ s.t. $\deg u < k$
 • Output and remove u

2. else
 • Contract a random edge

for sufficient number of times

• Apply above algo. for subgraphs
Implementing an Iteration

Challenge:
Karger’s idea does not work
It does not really simulate random contraction, but just a binary search

Karger: Only contraction & interested only in final state

Proposed:
Contraction & Cut

Proposed:
At any moment
\[\text{deg}(\nu) < k \]
Implementation

We really simulate random contraction
(in contrast to Karger’s min-cut)

How to process contraction efficiently?
• We maintain adjacency lists in hash dictionaries
• Contraction: merge two hash dictionaries
 – *Weighted Quick-find Algorithm* [Yao’76]

Time Complexity:
• Average time complexity $= O(|E|)$
Improving Technique: Forced Contraction

k edges exist between two vertices
→ Immediately contract them

Since they will never be separated
Drastically decreases failure probability
while \(G \neq \text{empty} \)

1. if \(\exists u \in V \text{s.t.} \deg u < k \)
 - Output and remove \(u \)
2. else
 - Contract a random edge

for sufficient number of times

- Apply above algo. for subgraphs

Outline

1. High-level Description
2. Implementation & Complexity
3. Number of iterations
Necessary Number of Iterations

Separating M_kECS S with arbitrary high probability

Easy bound:

1. $O(|S|^2)$ iterations suffice [Karger’93]

More involved analysis with forced contraction:

2. $O(\log^2 |S|)$ iterations suffice

Completely decompose with small number of iterations

Theoretically guaranteed!
Experiments
Experiments: Number of iterations (1)

Iterations vs. Remaining cuts

| Dataset | $|V|$ | $|E|$ | Type |
|-----------|--------|--------|-----------------------|
| Hollywood | 2.1 M | 228 M | Social network |
| Indochina | 7.4 M | 150 M | Web graph |
Experiments: Number of iterations (2)

Completely Decompose (100 runs)

| Dataset | |V| | |E| | 種類 |
|-----------|---|-----|---|-----|-------------------|
| Hollywood | 2.1 M | 228 M | Social networks |
| Indochina | 7.4 M | 150 M | Web graphs |
Experiments: Running time (small)

![Bar chart showing running times for different datasets and k values.](chart.png)

Dataset | **|V||** | **|E||** | **種類**
--- | --- | --- | --- | ---
Arxiv-GrQc | 5.2 K | 28 K | Social networks
Epinions | 76.8 K | 406 K | Social networks

Intel Xeon X5670 (2.93GHz), 48GB, C++(proposed), Java(previous)

7 × 10^4 times faster!
Experiments: Running time (large)

Can handle networks with **hundreds of millions** of edges

| Dataset | $|V|$ | $|E|$ | Type |
|--------------|------|-------|-----------------|
| India | 1.4 M| 17 M | Web graphs |
| LiveJournal | 4.8 M| 69 M | Social networks |
| Indochina | 7.4 M| 150 M | Web graphs |
| Hollywood | 2.1 M| 228 M | Social networks |

Intel Xeon X5670 (2.93GHz), 48GB, C++
Conclusion

Finding cohesive groups in graphs

- Serious problem of classic models
- Recent model: M_kECS
- Well-connected, but the enumeration algorithm was slow

New algorithm for enumerating M_kECSs

- Based on random contraction
- Works in nearly linear-time (with theoretical guarantee)
- Several orders of magnitude faster than previous algo.

Software available: http://git.io/mkecs